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Probabilistic-based approach to optimal filtering
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Atmospheric, Oceanic and Planetary Physics, Clarendon Laboratory, Parks Road, Oxford OX1 3PU, United Kingdom

~Received 25 June 1999!

The signal-to-noise ratio maximizing approach in optimal filtering provides a robust tool to detect signals in
the presence of colored noise. The method fails, however, when the data present a regimelike behavior. An
approach is developed in this manuscript to recover local~in phase space! behavior in an intermittent regime-
like behaving system. The method is first formulated in its general form within a Gaussian framework, given
an estimate of the noise covariance, and demands that the signal corresponds to minimizing the noise prob-
ability distribution for any given value, i.e., on isosurfaces, of the data probability distribution. The extension
to the non-Gaussian case is provided through the use of finite mixture models for data that show regimelike
behavior. The method yields the correct signal when applied in a simplified manner to synthetic time series
with and without regimes, compared to the signal-to-noise ratio approach, and helps identify the right fre-
quency of the oscillation spells in the classical and variants of the Lorenz system.

PACS number~s!: 05.45.2a, 02.50.2r
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I. INTRODUCTION

It is a fact that physical and natural phenomena, such
geophysical systems, have a complicated nonlinear chara
involving, most of the time, high- and intermittent low
frequency behavior. The question of identifying regular s
nals from such systems is therefore an important and c
lenging one given that~i! in most, if not all, physical system
only a subset of observables are generally accessible, an~ii !
even if we gain much information about the system, the qu
ity of the observations, which is at least as crucial as
observables themselves, can never be perfect. Hence
need of tools to unveil information regarding signal detect
from such systems.

Most techniques of signal detection, such as singu
spectrum analysis,~SSA! @1,2#, and signal-to-noise ratio
maximizing approach@3#, all attempt to identify oscillations
embedded in a given data set that behave ‘‘nicely.’’ To
best of our knowledge no such attempt has been mad
genuinely investigate the question of a true high-freque
signal in an intermittent low-frequency behavior. More pr
cisely, although the problem of signal detection has go
through a wide range of application, the question of iden
fying oscillations in an intermittent regimelike behaving sy
tem does not seem, to our knowledge, to have been t
addressed.

The latter question is of crucial importance in geophysi
sciences and particularly in analyzing climate variabil
given the need to understand the climate system in orde
be able to predict it for long lead time. Because of its co
plicated nonlinear structure, the climate system can often
hibit a regimelike behavior@4,5#. From a probabilistic frame-
work, the latter feature implies that the climate system c
often display a significant departure from Gaussian behav
Therefore, detection approaches should take this fact
consideration if one wants to identify reliable climate s
nals.

In an attempt to identify climate signals, Ghil and Vauta
@6# applied SSA to the Intergovernmental Panel on Clim
Change~IPCC! 136-year record of global annual-mean ne
PRE 611063-651X/2000/61~4!/3610~10!/$15.00
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surface temperature to look for the signature of an interd
adal oscillation by identifying an eigenorthogonal functio
~EOF!, i.e., covariance matrix eigenvector, pairs of sin
cosine waves corresponding to~nearly! equal eigenvalues o
the covariance matrix. However, Allen and Smith@3# have
shown that the IPCC series is consistent with a nonlin
trend plus a first-order autoregressive process@AR~1!# noise,
and therefore does not indicate either interannual or interd
adal oscillations. In fact, SSA is justified only if the hypo
thetical noise in the data set is white, but that it can fail
identify genuine and detectable oscillations in the prese
of colored noise. Reference@3# proposed a refinement base
on maximizing a signal-to-noise (S/N) ratio, similar to the
metric-based principal component analysis@7#. The S/N ra-
tio technique fails, however, when, for example, the d
present a non-Gaussian behavior, which is the main con
here.

In this paper we attempt to include both factors, the no
and regimelike behavior, in order to recover a true hig
frequency signal in an intermittent low-frequency behavi
system. Because this study was initially driven by some
mate variability investigations, the method assumes
knowledge of the noise. Most climate studies use gen
circulation models~GCMs! to analyze climate variability.
For example, to analyze climate change, GCMs provid
good tool to estimate and therefore separate the internal v
ability noise from the response to external forcing by p
forming an ensemble of integrations corresponding to
same forcing but with different starting conditions. Also,
many geophysical examples, the noise can be well appr
mated by a colored noise with parameters calculated fr
the data. Nevertheless, the problem of estimating the nois
general remains a difficult one.

Since the present approach includes and also genera
theS/N maximizing ratio technique@3# we briefly review the
background of the technique in Sec. II and introduce so
notations that will be used later. The formulation of the a
proach within the Gaussian framework is presented in S
III, where both probability distribution functions~PDFs! of
the data and the noise are Gaussian. Extension to n
Gaussian cases is presented in Sec. IV. Application to s
3610 © 2000 The American Physical Society



th
y

th

th
th
or

f

ti

or
re

th

o-
ch
te
is

ne
e
in
m
p
si

ova-
s-

lity
w-

of
nce,
ter-
he
on

be
he

the
ties

f

e
by
p-
n
il-

e
oise
ad-
ield

ise
but

ni-
re.

each

Ma-

en
ith
by
s
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thetic univariate time series as well as to variants of
classical Lorenz system@4# is presented in Sec. V and finall
a summary and conclusion are given in Sec. VI.

II. BACKGROUND AND THE SÕN RATIO

A natural way to estimate a signal from~noisy! data,
given an estimate of the noise, is to look for patterns in
phase space that maximize theS/N ratio. The latter tech-
nique was used in@3# as an extension to the SSA to deal wi
colored noise and we give here a brief description of
method along with useful notations. A prewhitening transf
mation @8# was used by@3# to maximize theS/N ratio

r5
uTCDu

uTCNu
5

zTCD* z

zTz
, ~1!

where

z5CN
1/2u, u5CN

21/2z, and CD* 5CN
21/2T

CDCN
21/2. ~2!

In Eqs.~1! and~2!, CD andCN are the covariance matrices o
the data and the noise, respectively. The vectorsu5CN

21/2z,
wherez are the eigenvectors ofCD* with the largest eigen-
values, thus provide an optimal set of signal-to-noise ra
(S/N) maximizing patterns.

The notation in Eq.~2!, which will be used throughout, is
derived from the singular value decomposition~SVD! proce-
dure @9,10#. Accordingly, if C is a covariance matrix we
have

C5ELET5C1/2T
C1/2 and C215EL21ET5C21/2C21/2T

,
~3!

where C1/25L1/2ET and C21/25EL21/2 ~note that the
‘‘square root’’ of a covariance matrix is not unique!. The
diagonal matrixL contains the eigenvalues ofC and the
columns of E constitute its eigenvectors. Note that f
univariate data, for example, an oscillatory signal cor
sponds to the case of two leading eigenvalues being~nearly!
equal and separated from the rest of the spectrum. In
case the two vectorsu05CN

21/2z0 andu15CN
21/2z1 , wherez0

and z1 are the leading eigenvectors ofCD* , constitute two
oscillatory waves in quadrature.

III. PDF-BASED SIGNAL DETECTION APPROACH:
GAUSSIAN CASE

A. Introduction and objectives

In the real world, nonlinearities can be important in intr
ducing non-Gaussian behavior, which can ‘‘frustrate’’ su
linear diagnostics in characterising climate signals as poin
out in @11#. A probabilistic approach based on the PDF
therefore appropriate to the problem and is easier to ge
alize to non-Gaussian systems. Our objective here is to id
tify regular signals~oscillation in this case as presented
Sec. V! embedded in a noisy data set based on the assu
tion that we know the noise probability distribution. We su
pose here that the data and the noise are both Gaus
e
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centered at the phase space origin, and with respective c
riancesCD andCN . The generalization to non-Gaussian sy
tems follows in Sec. IV.

It is the case that the knowledge of the noise probabi
distribution is a strong hypothesis in the real world. Ho
ever, as pointed out in the Introduction, in many examples
climate analyses this hypothesis can be met. For insta
climate models can provide the means to estimate the in
nal variability noise of the climate system. The use of t
Gaussian distribution function, on the other hand, is based
the completeness of the set of such distributions that will
exploited in Sec. IV to extend this technique to include t
case where the PDF of the data is not~approximately! Gauss-
ian but rather a mixture of Gaussians.

B. Description of the approach

To formulate the approach, we denote first bypD andpN
the Gaussian probability distributions of the data and
noise, respectively. Then the respective probability densi
of a particular patternv are

pD~v!5
1

~2p!m/2uCDu1/2e21/2vTCD
21v, ~4!

and

pN~v!5
1

~2p!m/2uCNu1/2e21/2vTCN
21v. ~5!

The notationuCDu in Eq. ~4! stands for the determinant o
CD . Note thatpD(v)dV@pN(v)dV# is the probability of the
data@noise# being within the phase space volumedV near to
the position or patternv. Note also that the independenc
between the signal and the noise is implicitely implied
Eqs.~4! and~5!. In theory it is possible to drop this assum
tion provided we know the joint probability distribution. I
practice, however, such information is very seldom ava
able.

Ideally, we would be interested in locations within th
phase space with simultaneous high data and low n
PDFs, respectively. If both data and noise PDFs are
equately defined, these positions within the phase space y
the most likely signal location. Note that problems may ar
with the estimation of these PDFs from limited samples
the principle should be clear.

Since, in particular, we are seeking locations with mi
mum noise PDF, we adopt the following natural procedu
Within the phase space, we form connected subsetsSd cor-
responding to isopleths ofpD , obtained by cutting through
the data PDF,pD , at different constant valuesdd , i.e., Sd

5pD
21(dd), and we then minimize the densitypN over each

of these connected subsets. To see this we note first that
Sd is given byd25vTCD

21v. The PDF of the datapD can
then be transformed using the preceding metric, i.e., the
halanobis metric based onCD

21, to yield an isotropic distri-
bution whereby all directions are equally probable. We th
look for regions or directions within the phase space w
minimum noise PDF for any given data PDF value, given
(2p)2m/2uCDu21/2exp(21

2 d2). Such minimum exists and, a
shown below, it turns out that when
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3612 PRE 61A. HANNACHI
varying the data PDF value, i.e., varyingdd , all the minima
remain in the same direction, which is by definition the
quired signal pattern.

To proceed we then minimize

min pN5
1

~2p!m/2uCNu1/2e21/2vTCN
21v, ~6!

or, equivalently~the exponential is monotonically increa
ing!,

maxvTCN
21v, ~7!

for any givenpD value or, similarly, any given

d25vTCD
21v. ~8!

We find the patternsv that minimizepN over isosurfaces
of pD by finding the stationary points of the Lagrangian

L5vTCN
21v2l~d22vTCD

21v!, ~9!

wherel is a Lagrange multiplier. This yields the generaliz
eigenproblemCN

21v5lCD
21v, which can be written in the

more compact form

CDCN
21v5lv. ~10!

It is worth noting that the same solution patterns are obtai
by maximizingpD on isosurfaces ofpN instead, but we fol-
low the first choice, i.e., minimizingpN , because it is sim-
pler if the data distribution is more complicated than t
noise distribution as is often the case~see Sec. IV!.

The other way to solve the problem is via the SVD pr

cedure. Using notation from Eq.~3! and lettingj5CD
21/2T

v,
then Eq.~7! becomes equivalent to

maxjT~CD
1/2CN

21CD
1/2T

!j, ~11!

along with the constraint~8!, uju25d2. Combined with a
Lagrange multiplier, Eq.~11! results in the eigenvectorj0
corresponding to the largest eigenvaluel0 of the symmetric

operatorCD8 5CD
1/2CN

21CD
1/2T

whose decomposition is

CD8 5CD
1/2CN

21CD
1/2T

5ED8 LD8 E8D
T . ~12!

The diagonal matrixLD8 contains the eigenvalues ofCD8
whose eigenvectors form the columns ofED8 . The signal
patternv solution to the original problem is then given by th
transformation

v5CD
1/2T

j05EDLD
1/2j0 . ~13!

The required patterns@Eqs. ~10! or ~13!# are therefore
eigenvectors of the matrixCDCN

21 that we labeldetection
matrix for obvious reasons and whose spectrum is given
the diagonal matrixLD8 . Hence, providedCN represents the
true covariance of the noise, the eigenvector of the detec
matrix corresponding to the maximum eigenvalue repres
an estimate of the signal orientation. Application to synthe
test series has been performed in Sec. V A and the true
cillation in the data was identified~see Fig. 2!.
-
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C. Discussion

The choice of labelling the operatorCDCN
21 detection ma-

trix is based on various reasons. First, the matrix is used
detect signal patterns as presented here, and also to find
efficient vectors of the metric-based principal compone
presented in@7#. It also appears explicitly in other relate
subjects such as the study of information content of obser
atmospheric data@12# and numerical weather prediction@13#.
Moreover, in the field of classification, one also encount
the same kind of matrix. In fact, when looking for classi
cation rules to detect or identify clusters, a similar detect
matrix emerges explicitly when Fisher’s linear discrimina
analysis is applied@14# or when a simple optimization crite
rion of the trace of the class covariance matrix is involv
@15#. For numerical computation of its spectrum it may
preferable to proceed via Eqs.~11! and~12! since the detec-
tion matrix is in general nonsymmetric. Other iterative me
ods exist to solve the generalized eigenproblem~10! based
on the so-called Jacobi-Davidson method when the matr
are large and we refer the reader, for details, to@16#.

Now, to make clear the link to theS/N ratio approach, we
differentiate Eq.~1! with respect tou to yield the~general-
ized! eigenproblem

CN
21CDu5ru, ~14!

whose solutions are the eigenvectors of the detection ma
adjoint. Therefore, theS/N maximizing patterns and the
PDF-based patterns form, respectively, the left and ri
eigenvectors of the detection matrixCDCN

21, i.e., they are in
duality of each other. In the single channel, i.e., the univa
ate case, these two patterns generally coincide with the
genvector of the signal covariance when this latter is l
rank. However, in multichannel problems theS/N maximiz-
ing patterns and the PDF patterns are generally different
the simple reason that the detection matrix is not symme
so the distinction between them is important. Furthermo
in addition to being aS/N ratio, an eigenvaluel of the
detection matrix can now be interpreted in such a way t
exp~2l! represents the noise probability around the cor
sponding pattern within a unit element of volume of t
phase space.

To complement our analysis, the metric-based princi
components presented in@7# can be discussed. Although th
original problem addressed in this paper is different fro
that of @7#, several common points emerge. The noise co
riance matrixCN is the equivalent of the error covarianc
matrix of @7#, while the S/N ratio is the equivalent of the
variability of the index~generalized principal componen!
relative to its uncertainty. Equations~10! and~14! lead, after
simple algebra, to

v5CNu, ~15!

so thatu andv are, respectively, the equivalent of the coe
ficient or weight vectors and state space patterns of@7#.

Note that owing to the symmetric, but not identical, rol
of u and v @Eqs. ~10! and ~14!# a similar equation to~15!,
involving CD instead, exists. Also, Thacker and Lewando
icz @17# emphasized the importance of the Gauss-Mark
theorem in determining the Gauss-Markov weights for in
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PRE 61 3613PROBABILISTIC-BASED APPROACH TO OPTIMAL FILTERING
ces to predict local variables. Although stated in a differ
context, it is worth pointing out the connection between
probabilistic interpretation of the patterns and the Gau
Markov weights.

IV. EXTENSION TO THE NON-GAUSSIAN CASE

A. Introduction

Although the real world may not be Gaussian, it ca
however, exhibit regimelike behavior, where each regime
nearly Gaussian. This regime behavior is observed alm
everywhere, from dynamo theory in geophysics, related
the reversals of the Earth’s magnetic field@18#, to geophys-
ical fluid dynamics@4,5#. For instance, it has been observ
that the atmosphere is not a mere ‘‘red noise’’ of day-to-d
fluctuations but displays, rather, a kind of regimelike beh
ior. As Leith @19# quoted: ‘‘One suggested source of su
slow changes is the possible existence of separate regim
internal behavior such that the atmosphere, having ent
one regime, tends to remain there for extended period
time. The long internal time scales induced by such almo
intransitive behavior@20# give a possibility of long-range
forecasting skill, especially if the transitions between
gimes are predictable.’’ Unfortunately, these transitions
generally unpredictable, as can be modeled by the simpli
Lorenz model@4#.

Gaussian mixture models are a good candidate for m
elling such regimelike behavior where each regime clus
can be well approximated by a Gaussian and the overall
set becomes a weighted sum of these individual Gaus
PDFs. The cornerstone of the mixture model is the w
known elementary, but important, analytical result summ
rized in the following lemma@21#.

Lemma. Any probability densityp(x) can be approxi-
mated as closely as desired@in L1(Rm) norm, i.e., i f i
5*Rmu f (x)udx] by a finite mixture~weighted sum! of Gaus-
sians as;p(x)5S i 51

k a ig i(x) for some integerk, positive
scalarsa i with S i 51

k a i51, and Gaussian PDFsg i .
The mixture model technique is widely used in appli

statistics@22# and also in geophysics and other fields such
the application to atmospheric-model data clustering@23#. It
is very convenient for PDF estimation and cluster identifi
tion @24# especially given the existence of efficient iterati
approaches, such as the expectation-maximization algor
@25#. Everitt and Hand@26# also provide a good review an
cover most algorithms used in mixture analysis.

B. The non-Gaussian case

We now consider the extension of the approach descr
in Sec. III B to deal with the non-Gaussian case for the d
and based, as before, on the assumption that we hav
estimate of the noise probability distribution. Precisely,
consider, here and in the corresponding application in S
V B, the noise to be Gaussian and the data to be, for simp
ity, a mixture of two Gaussians. The case of more than
can be treated similarly. The expression of the noise pr
ability distributionpN is given by Eq.~5!, while for the data
we now have
t
e
s-
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~2p!m/2pD~x!5
a

uCD1
u1/2e21/2~x2m1!TCD1

21
~x2m1!

1
12a

uCD2
u1/2e21/2~x2m2!TCD2

21
~x2m2!, ~16!

wheremi andCDi
( i 51,2) are the center and the covarian

matrix of the i th cluster, respectively. In Eq.~16!, a is the
proportion of the data in the first cluster.

Since, in general, the solution to the equivalent of E
~6!–~8! when we have a mixture PDF for the data such
Eq. ~16! can only be obtained numerically, and in order
get a simplified analytical solution we suppose that the t
Gaussians are not very close to each other, i.e., the data
is bimodal, so that optimization can be done locally arou
each maximum ofpD ~see the Appendix!. Note that bimo-
dality does not necessarily mean that the Gaussians are
separated; it is only a simplified way to solve the proble
and the final result is independent of this hypothesis.
should be noted in this context that not all mixture distrib
tions of type~16! show bimodality@26#.

Subject to this bimodality assumption, the original pro
lem is transformed into a signal detection problem over e
data cluster~see the Appendix! and consequently there is
solutionv for each cluster. More precisely, the solutionvi ,
to the above problem, for thei th cluster (i 51,2) is given by

vi5CDi

1/2T
j 0

i , ~17!

where j0
i is the eigenvector of the matrixCDi

8

5CDi

1/2CN
21CDi

1/2T
( i 51,2 for clusters 1 and 2, respectively!

corresponding to its leading eigenvaluel0
i . Said in a simpli-

fied manner, the signals can be identified by reapplying
analysis of Sec. III but over each cluster of the data se
rately, having first subtracted the mean evaluated over
cluster. Figure 1 shows a schematic representation of a t
dimensional~2D! case with two Gaussians~regimes!. The
dashed-dotted line~major axis of the data covariance matri!
is what conventional approaches, such as theS/N ratio tech-
nique, would give, while the actual approach would ident
the right signalsv1 andv2 .

FIG. 1. Schematic representation of a 2D case with two regim
shown by ellipses. The dashed-dotted line is what a conventio
like theS/N ratio, approach would give while the present approa
would produce the signalsv1 andv2 . The dashed circle represen
the prewhitened noise.
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V. APPLICATION TO A GENERATED TIME SERIES

The approach developed so far is general and can be
with embedded and nonembedded state vectors. Since,
ever, we are dealing with univariate signals in this sectio
is therefore helpful to embed the signal in a higher dim
sional phase space, using the delay coordinates method@27#
as usually performed in SSA, although SSA is not the k
issue here. In this case, the time series (xi)1< i<N
5@x(t i)#1< i<N of a variablex at times (t i) is transformed
into a higherM-dimensional phase space by sampling
data using a sliding window of chosen lengthM to yield the
new M-dimensional time series (X i)1< i<N2M11 ,

X i5~xi ,...,xi 1M21! for 1< i<N2M11. ~18!

The covariance matrixCD of the new time series is calcu
lated based on the ‘‘nonbiased’’ Yule-Walker rule for th
autocovariance function,cj51/(N2 j )S i 51

N2 j xixi 1 j , of the
original time series (xi) and is given by

~CD! i j 5ci 2 j 21 . ~19!

A. Case of an approximate Gaussian distribution:
No regime behavior

We first construct the signalS(t) by randomly generating
damped sinusoidal bursts, with periodT55 units and an
e-folding time t of 30 units, initiated with 0.5% chance a
each time step. Analytically, the signal can be written as

S~ t !5 (
n50

n5`

1@Tn ,Tn11#~ t !expS 2
t2Tn

t D sinS t2Tn

T D ,

~20!

where the process (Tn) is defined by its initial valueT0
50, and a recurrent relationship Tn115 inf$m
.Tn ,Sk5Tn

m Vk51%, where (Vk) is a sequence of indepen

dent random variables, each taking zero and one with res
tive probabilities 99.5% and 0.5%. The noiseh is an AR~1!
centered red noise

h t115cos~u!h t1sin~u!zt11 , ~21!

with u50.77 andzt is a unit variance white noise. In Eq
~20! the function 1@a,b# equals one inside the interval@a, b#
and zero elsewhere. In this example the datasetD(t) is ob-
tained by

D~ t !5~11«h t!S~ t !1h t , ~22!

where« is a small parameter, normallyo(1), that reflects the
weak nonlinear interaction between the signal and the no
The case where the data is simply the sum of the signal
the noise corresponds to«50. In Fig. 2~a! is shown the
signalS(t) ~dotted! and the data time seriesD(t) ~solid line!
for «50.5. Note in particular the strong amplitude of th
noise compared to that of the signal.

The covariancesCD and CN of the data and the noise
respectively, are computed as in Eq.~19!. The eigenspectrum
of the matrixCD8 @Eq. ~12!#, which is identical to that of the
detection matrixCDCN

21, is shown in Fig. 2~b!, which indi-
cates a leading pair of ‘‘equal’’ eigenvalues with a break
ed
w-
it
-

y

e

c-

e.
nd

the spectrum, the signature of the existence of an oscilla
in the data. The first two signal patterns@Eq. ~13!# corre-
sponding to the leading pair of eigenvalues are displaye
Fig. 2~c!, where the two sine waves in quadrature clea
show the periodic signal contained in the data. Finally,
verify the Gaussian behavior of the distribution of the te
series, we show in Fig. 2~d! the histograms of the noise an
the data. The normal distribution is also shown for compa
son.

B. Case with non-Gaussian data: Regimelike behavior

As an application to the theory presented in Sec. IV, t
examples are considered. The first one deals with a gener
signal with regimelike behavior, while in the second exam
the classical Lorenz model@4# is considered. In the first ex
ample, the signalS(t) has two periodsT1 and T2 and
switches randomly from one regime center to the other.
each fifth time step there is a probability of 20% that t
system changes regime. In each regime the signal is an
plified sine wave with ane-folding time t of 30 units. The
regime centersm1 and m2 are chosen to be symmetric wit
respect to the origin rather similar to the original Lore
system@4# and the distance 2d5um12m2u is a parameter tha
one can modify. The parameterd is used for analyzing the
sensitivity of the validity of the Gaussian model. The te
seriesD(t) is obtained using Eq.~22! but for the results we
show the case for«50.

In Fig. 3 we show both the signalS(t) @Fig. 3~a!# and the
dataD(t) @Fig. 3~b!# when T155, T257 units, andd51.
For small values ofd, i.e., d varying between 0 and 0.32
both techniques, i.e., theS/N ratio method and the Gaussia
model of Sec. III, give similar~correct! results. This is par-
ticularly true whenT15T2 , since there is only one fre
quency to detect. This means that for this range of value
the parameterd, 0<d5 1

2 um12m2u<0.32, there is no need to
separate the data into clusters and the case can still be tre
using the Gaussian model of Sec. III. In this case the
quencies in the first and the second pairs of eigenvect
corresponding, respectively, to the first and the second p
of eigenvalues, represent, respectively, the first and the
ond oscillations in the data.

Now, as the distanced gets larger,d .0.32, theS/N al-
gorithm fails ~as shown below! to identify the correct fre-
quency even when the two frequencies are identical, i.e.,
signal contains only one frequency. This failure is easily u
derstood since now the covariance matrixCD no longer re-
flects the true structure of the data~refer to Fig. 1!. In fact,
Fig. 4 shows the noise and the data of Fig. 3 within the fi
two delay coordinates. In Fig. 4~b! the clusters are shown fo
d51.5. Note thatd has been increased to 1.5 in Fig. 4~b! for
the purpose of emphasizing the bimodality~non-Gaussian
character! of the data. Figure 5~a! shows the two leading
EOFs maximizing theS/N ratio. To show the sensitivity of
the Gaussian model to changes ind, we display in Fig. 5~b!
the ratios (l0 /l1) and (l1 /l2) as a function of the param
eter 2d, where l0 , l1 , and l2 are the first three leading
eigenvalues of the matrixCD8 @Eq. ~12!#. Note that an oscil-
lation corresponds approximately to values near to a
~much! larger than 1 for the first and second ratios, resp
tively. Clearly this figure shows that for smalld ~d<0.32!
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FIG. 2. ~a! The signalS(t) obtained by randomly generating damped sinusoidal bursts~dotted! and the test seriesD(t) ~solid! given by
Eq. ~22! with «50.5; ~b! the eigenspectrum of the transformed matrixCD8 @Eq. ~12!# in decreasing order showing the leading pa
corresponding to the oscillation in the data;~c! the first two signal patterns@Eq. ~13!# corresponding to the leading pair of eigenvalues ofCD8
and showing the correct oscillation; and~d! the histograms of the noise~solid! and the dataD(t) ~dotted!, respectively, along with the norma
distribution for comparison.
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the case can still be included in the Gaussian model, butd
gets larger, the model is no longer valid and one has to re
to the non-Gaussian analysis. Note that this simple adequ
criterion, based on the generated univariate test series, ca
be applied to the complicated, multivariate general case
it is recommended, in general, to apply the mixture analy
to check whether the data at hand support multiregime
rt
cy
not
nd
is
e-

havior and then use the non-Gaussian approach. This is
ticularly important for atmospheric low-frequency variabili
given the regimelike behavior of the atmosphere on th
scales.

Since the PDF-based algorithm takes into account the
tribution of the data and the noise in phase space, we a
Eq. ~17! to the same example withCD1

(CD2
) being the
ted by
FIG. 3. ~a! The signalS(t) generated by initiating an amplified periodic signal switching between two regime centers, separa
2d52, with respective periods 5 and 7 units and~b! the time seriesD(t) obtained by adding a red noise to the signal.
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FIG. 4. Projection of the noiseh t ~a! and the test seriesD(t) ~b! of Fig. 3 onto the first two delay coordinates. 1500 points have b
used~b! we have chosend51.5 to emphasize the bimodality in the data.
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covariance matrix@Eq. ~19!# of the time series obtained sim
ply by cutting through the original time series@Fig. 3~b!# by
a horizontal lineh5h0 , and analyzing the upper~lower! part
separately. Several experiments have been carried out
varying h0 and it is found that the method is quite robust
changes inh0 over a wide range. As an example, for20.5
<h0<0.5, we always identify the correct signals. In Fig.
we show the eigenspectrum ofCD1

8 @Fig. 6~a!# along with the

eigenvectors given by Eq.~17! and corresponding to the tw
leading eigenvalues for the first regime@Fig. 6~b!#. A similar
correct result is obtained for the second part of the ti
series~not shown!. They both accurately identify the osci
lations in the data.

The previous example was based on an artificial, pur
probabilistic process. In order to involve a more realis
dynamical model with geophysical connection and w
chaos and regime behavior, variants of the Lorenz mode@4#
are considered next. More precisely, the ‘‘forced’’ Lore

FIG. 5. ~a! The two leading solutions maximizing theS/N ratio
@Eq. ~1!# applied to the global test series of Fig. 3 and~b! the ratios
(l0 /l1) ~solid! and (l1 /l2) ~dotted! as a function of 2d5um1

2m2u. The vertical scale is logarithmic.
ith

e

ly

model @11# is the focus here. Compared to the original sy
tem, the forced version can introduce asymmetry into
regimes. The model equations are

ẋ52s~x2y!1 f 0 cosu,

ẏ52xz1rx2y1 f 0 sinu, ~23!

ż5xy2bz.

In @11#, this model has been used to interpret the climate
terms of a nonlinear dynamical system attractor with disti
regimes. The parameterss, r, andb in Eq. ~23! are the same
as in the original Lorenz system with (s,r ,b)5(10,30,8/3)
and with f 052.5 as in @11#. The additional forcing
( f 0 cosu,f0 sinu) can bias the model regimes by increasi
the stability of one of the original model attractors, whic
therefore becomes occupied more often than the other reg
rather similar to the ‘‘extended’’ version@28#. In fact, it has
been shown in@11# that the angleu of the forcing can modify
the PDFs associated with the two regimes. It is also note
@11# that the phase space position of the regime centro
does not change as the forcing rotates from one directio
another. In this paper we are interested in detecting the
quency of the oscillation spells in the system and we cho
u5p/4.

System~23! is integrated using a Euler scheme with tim
stepdt51022. The system attractor within thex-z plane is
shown in Fig. 7~a!. For the analysis we choose to focus o
the variablex since it displays regime behavior. The corr
sponding time seriesx(t) is resampled everyDt510dt @Fig.
7~b!# in order to bring to a reasonable size the embedd
window length. The resampled and rescaled~scaling factor
of 0.2! time series is contaminated with red noise@Fig. 7~c!#
and the filtering procedure as in the first example is p
formed.

As in the previous example, the result is found to be
bust to changes inh0 . For example, for21.1<h0<1.1, we
always get the correct oscillation within the first regime, i.
we do not need a precise boundary between the regime
fact, as in Fig. 5~b!, Fig. 8~a! shows the ratios (l0 /l1) and
(l1 /l2) as a function ofh0 in regime 1~upper part! of the
model. In particular, the figure illustrates that in order
estimate the signal within the first regime, the separation
can cross the domain of the second regime. This rem
valid as long as the line does not get too close to the reg
center. By looking towards the left side of Fig. 8~a!, at the
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FIG. 6. ~a! The eigenspectrum ofCD1
8 and~b! the signal patterns@Eq. ~17!#, corresponding to the leading pair of eigenvalues and show

the oscillation in the first regime withh050.3.
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smallest~negative! values ofh0 , i.e., considering the globa
time series, one can tell that the Gaussian model~Sec. III!
fails to identify the signal. In fact, Figs. 8~b! and 8~c! show,
respectively, the spectrum ofCD8 . @Eq. ~12!# and the two
leading patterns@Eq. ~13!#, i.e., when the whole test series

FIG. 7. ~a! Trajectory of the ‘‘forced’’ Lorenz model within the
xz-plane,~b! the time evolution ofx sampled every tenth time step
and~c! the contaminated test series obtained by adding a red n
to the ~resampled and rescaled! trajectoryx(t). A Euler numerical
scheme with time stepdt51022 is used for time integration.
used at once. In Fig. 9, we show the spectrum ofCD1
8 along

with the first pair of eigenvector patterns@Eq. ~17!# in the
first regime (h0520.5). A similar oscillation is obtained in
the second regime~not shown!.

Other experiments are performed where, for example,
data projected onto the delay phase space are split into c
ters using the ‘‘k-means’’ technique, where the clusters b
come separated by a hyperplane@15#. In this latter case, and
because we are dealing with embedded state vectors, on
subset of each cluster is used in signal detection. Again s
lar results are found with similar robustness to changes in
position of the hyperplane. Experiments with small nonze
« and also using the original Lorenz model as well as
extended version@28# were also carried out, and it is foun
that the method successfully detects the correct signal.

VI. SUMMARY AND CONCLUSION

An approach has been developed to deal with the ide
fication of regular signals contained in an intermitte
regimelike behaving~noisy! system. The approach is base
on the assumption that we are provided with an estimate
the noise. This assumption has been made because in cli
analysis the internal variability noise of the climate syste
can be estimated using climate models. Also, in many ot
geophysical examples the noise can be reasonably re
sented by a colored noise with characteristics computed f
the data. The approach is, of course, straightforward, ap
cable to noise-free or white-noise-contaminated data.

The approach has been first formulated within a Gauss
framework for the data and the noise, and aims to iden
locations~signals! within the phase space that minimize th
noise probability distribution on isosurfaces of the data pr
ability distribution. The~PDF! signals are simply the eigen
vectors of the detection matrixCDCN

21 corresponding to the
leading eigenvalues and are therefore dual of the signa
noise ratio maximizing vectors. The method is then exten
to the non-Gaussian case by expressing the data by a mix
of Gaussians. The signal is then identified for each reg
using the Gaussian approach.

The method has been successfully applied to synth
univariate test series with and without regimes as well as
variants of the Lorenz system. In the single-channel c
with regime behavior, the data is easily split into regimes
performed in Sec. V B, and it is shown that the approach
quite robust to reasonable~small! changes in the position o
the line separating the regimes. In the multichannel ca

se
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however, the data have to be separated into~Gaussian! clus-
ters and the expectation-maximization algorithm provide
powerful tool to diagnose the regimes and therefore iden
the signals.

The method can be applied to atmospheric low-freque
variability to identify, for example, atmospheric signals~os-
cillations!. A separation of the data into regimes is then

FIG. 8. ~a! Ratios (l0 /l1) ~solid! and (l1 /l2) ~dotted! as a
function of h0 for the upper part~regime 1! of the forced Lorenz
model, the vertical scale is logarithmic.~b! The spectrum of the
matrix CD8 @Eq. ~12!# and~c! the two leading patterns@Eq. ~13!# of
the global test seriesD(t), i.e., corresponding toh0<min$D(t)%.
a
y

y

-

quired prior to the application of the Gaussian approach
climate studies where the internal variability noise can
estimated from general circulation models, the method
be applied to diagnose, for example, the effect of exter
forcing on the climate system. This point is under investig
tion and will be presented elsewhere.
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APPENDIX

In this short appendix we consider the case where
noise is Gaussian with PDFpN , and the data a mixture o
two Gaussians with PDFpD given by Eq.~16!. We suppose
in this Appendix thatpD is a bimodal distribution, i.e.,pD

has two local maxima at, say,m1
0 and m2

0. Note that bimo-
dality does not necessarily mean that the Gaussians are
separated, but we adopt this assumption just because
lows us to get to the heart of the problem, i.e., to work ov
each Gaussian component forming the data, and the resu
illustrated schematically in Fig. 1, is independent of this
sumption.

As can be inferred from Fig. 4~b!, for example, the region
between the two maxima is not the right location to look
since at that pointpN is at a maximum whilepD is at a
‘‘local’’ minimum. Instead, we have to look for signal pa
terns in the neighborhood of the two bumps ofpD by follow-
ing the same analysis of Sec. III. In fact, the only differen
is the structure ofSd5pD

21(dd), which is now nonconnected
and therefore the minimization should naturally be carr
out over each connected part ofSd , i.e., around each bump
of pD . Now it can be seen that

m15m1
01O~ u«ue21/2«TCD2

21
«!, ~A1!

where«5m12m2 . Therefore at a precision

O~ u«uexp@21/2«TCD2

21«# !,

one can optimize around the centresm1 andm2 respectively,
which yields, as in Sec. III, the minimization of the nois
probability distributionpN for any given data probability dis
FIG. 9. As in Fig. 6 but for regime 1 of the forced Lorenz model (h0520.5).
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tribution value p5(2p)2m/2uCDi
u21/2exp@21/2(v

2mi)
TCDi

21(v2mi)#, or similarly d25(v2mi)
TCDi

21(v

2mi), i.e.,

min~2p!m/2pN5
1

uCNu1/2e21/2~v2mi !
TCN

21~v2mi !,

d25~v2mi !
TCDi

21~v2mi ! ~A2!

for i 51 or 2.
The problem is therefore transformed into a minimizati

over each cluster~or Gaussian! separately and consequent
l,

n

P.
,

c

o-

ion

m
A

there is a solution pattern for each cluster. In~A2! the noise
density has been translated to the regime center for con
tency with Sec. III. The problem is then identical to Eqs.~6!,
~8!, and~11! and the solution is simply given by

vi5CDi

1/2T
j 0

i , ~A3!

where j 0
i is the leading eigenvector ofCDi

8 5CDi
CN

21CDi

1/2T

corresponding to thei th cluster. The conclusion is that onc
the data have been separated into clusters, the signal d
tion procedure can be carried out as in Sec. III but over e
individual cluster.
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