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Probabilistic-based approach to optimal filtering
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The signal-to-noise ratio maximizing approach in optimal filtering provides a robust tool to detect signals in
the presence of colored noise. The method fails, however, when the data present a regimelike behavior. An
approach is developed in this manuscript to recover IGogbhase spageehavior in an intermittent regime-
like behaving system. The method is first formulated in its general form within a Gaussian framework, given
an estimate of the noise covariance, and demands that the signal corresponds to minimizing the noise prob-
ability distribution for any given value, i.e., on isosurfaces, of the data probability distribution. The extension
to the non-Gaussian case is provided through the use of finite mixture models for data that show regimelike
behavior. The method yields the correct signal when applied in a simplified manner to synthetic time series
with and without regimes, compared to the signal-to-noise ratio approach, and helps identify the right fre-
qguency of the oscillation spells in the classical and variants of the Lorenz system.

PACS numbdps): 05.45-a, 02.50-r

[. INTRODUCTION surface temperature to look for the signature of an interdec-
adal oscillation by identifying an eigenorthogonal function
It is a fact that physical and natural phenomena, such ad=OF), i.e., covariance matrix eigenvector, pairs of sine-
geophysical systems, have a complicated nonlinear charactépsine waves corresponding (iwearly equal eigenvalues of
involving, most of the time, high- and intermittent low- € covariance matrix. However, Allen and Smigj have

frequency behavior. The question of identifying regular Sig'fsrgzgnplbhsa; tfri1r§t-|§r§ecr ;ﬁ::)erse g}lfeg(s)ir\ilsgfoné@\g%t(q)? nr(;ciJSnellnear
Inee:gi;r;g]nzugci\r;eiytsr:;;??nliwghs?r?ffcr)lz)et :IT L)T]Egiggln;yasrt]gmcshaénd therefore does not indicate either interannual or interdec-

= adal oscillations. In fact, SSA is justified only if the hypo-
only a subset of observables are generally accessibléjiand thetical noise in the data set is thite, but thgt it can f)g:i)l to

even if we gain much information about the system, the qualiyenify genuine and detectable oscillations in the presence
ity of the observations, which is at least as crucial as thgy coidred noise. Referen¢8] proposed a refinement based

observables themselves, can never be perfect. Hence @ maximizing a signal-to-noiseS(N) ratio, similar to the
need of tools to unveil information regarding signal detectionmetric-based principal component analy§is The SIN ra-
from such systems. tio technique fails, however, when, for example, the data
Most techniques of signal detection, such as singulapresent a non-Gaussian behavior, which is the main concern
spectrum analysis(SSA) [1,2], and signal-to-noise ratio here.
maximizing approach3], all attempt to identify oscillations In this paper we attempt to include both factors, the noise
embedded in a given data set that behave “nicely.” To theand regimelike behavior, in order to recover a true high-
best of our knowledge no such attempt has been made toequency signal in an intermittent low-frequency behaving
genuinely investigate the question of a true high-frequencywystem. Because this study was initially driven by some cli-
signal in an intermittent low-frequency behavior. More pre-mate variability investigations, the method assumes the
cisely, although the problem of signal detection has gon&nowledge of the noise. Most climate studies use general
through a wide range of application, the question of identi-circulation models(GCMs) to analyze climate variability.
fying oscillations in an intermittent regimelike behaving sys-For example, to analyze climate change, GCMs provide a
tem does not seem, to our knowledge, to have been trulgood tool to estimate and therefore separate the internal vari-
addressed. ability noise from the response to external forcing by per-
The latter question is of crucial importance in geophysicalforming an ensemble of integrations corresponding to the
sciences and particularly in analyzing climate variability same forcing but with different starting conditions. Also, in
given the need to understand the climate system in order tmany geophysical examples, the noise can be well approxi-
be able to predict it for long lead time. Because of its com-mated by a colored noise with parameters calculated from
plicated nonlinear structure, the climate system can often exhe data. Nevertheless, the problem of estimating the noise in
hibit a regimelike behavidd,5]. From a probabilistic frame- general remains a difficult one.
work, the latter feature implies that the climate system can Since the present approach includes and also generalizes
often display a significant departure from Gaussian behaviotthe S/N maximizing ratio techniqug3] we briefly review the
Therefore, detection approaches should take this fact intbackground of the technique in Sec. Il and introduce some
consideration if one wants to identify reliable climate sig- notations that will be used later. The formulation of the ap-
nals. proach within the Gaussian framework is presented in Sec.
In an attempt to identify climate signals, Ghil and Vautardlll, where both probability distribution functiond®DF9 of
[6] applied SSA to the Intergovernmental Panel on Climateghe data and the noise are Gaussian. Extension to non-
Change(IPCC) 136-year record of global annual-mean near-Gaussian cases is presented in Sec. IV. Application to syn-
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thetic univariate time series as well as to variants of thecentered at the phase space origin, and with respective cova-
classical Lorenz systefd] is presented in Sec. V and finally riancesCp andCy. The generalization to non-Gaussian sys-
a summary and conclusion are given in Sec. VI. tems follows in Sec. IV.

It is the case that the knowledge of the noise probability
distribution is a strong hypothesis in the real world. How-
ever, as pointed out in the Introduction, in many examples of

A natural way to estimate a signal frofmoisy) data, climate analyses this hypothesis can be met. For instance,
given an estimate of the noise, is to look for patterns in theclimate models can provide the means to estimate the inter-
phase space that maximize t8&N ratio. The latter tech- nal variability noise of the climate system. The use of the
nique was used if8] as an extension to the SSA to deal with Gaussian distribution function, on the other hand, is based on
colored noise and we give here a brief description of thehe completeness of the set of such distributions that will be
method along with useful notations. A prewhitening transfor-exploited in Sec. IV to extend this technique to include the
mation[8] was used by3] to maximize theS/N ratio case where the PDF of the data is feppproximately Gauss-

ian but rather a mixture of Gaussians.

II. BACKGROUND AND THE SN RATIO

u'Cpu {'Cj¢
pP= m = W, (1) B. Description of the approach

To formulate the approach, we denote firstgy and py
where the Gaussian probability distributions of the data and the
noise, respectively. Then the respective probability densities

(= Cﬁ,/zu, uZC'Gl/Zé«' and C’|5=C,]1’2TCDC,]”2. ) of a particular patterw are

1 _ T~—1
In Egs.(1) and(2), Cp andCy, are the covariance matrices of pp(Vv)= 2™ Cy [t e Ml (4)

the data and the noise, respectively. The veaer< 1'%,
where ¢ are the eigenvectors @, with the largest eigen- gnq
values, thus provide an optimal set of signal-to-noise ratio
(S/N) maximizing patterns. 1 -

The notation in Eq(2), which will be used throughout, is PN(V) = e e Y2y, (5)
derived from the singular value decompositi@VD) proce- (2m)™Cyl
dure [9,10]. Accordingly, if C is a covariance matrix we

have The notation|Cp| in Eq. (4) stands for the determinant of

Cp . Note thatpp(v)dV[pn(v)dV] is the probability of the
_ 3 _ 3 data[nois€ being within the phase space volumh¥ near to
_ T_ U212 1_ 1T - 12— 12"
C=EAE'=C"C" and C "=EA 'E'=C "C ™, the position or patterv. Note also that the independence
3 between the signal and the noise is implicitely implied by
B B Egs.(4) and(5). In theory it is possible to drop this assump-
where CY?=A2ET and C™"?=EA™*2 (note that the tion provided we know the joint probability distribution. In

square root” of a covariance matrix is not uniquerhe  yractice, however, such information is very seldom avail-
diagonal matrixA contains the eigenvalues @& and the gpje.

columns of E constitute its eigenvectors. Note that for Ideally, we would be interested in locations within the

univariate data, for example, an oscillatory signal correphase space with simultaneous high data and low noise
sponds to the case of two leading eigenvalues beiegrly  pprs, respectively. If both data and noise PDFs are ad-
equal and separated fromﬂ;he rest of thellzspectrum. In thigquately defined, these positions within the phase space vield
case the two vectons, = Cy ¢ andu; =Cy "¢, , wheredy  the most likely signal location. Note that problems may arise
and ¢, are the leading eigenvectors 6f, constitute two  with the estimation of these PDFs from limited samples but

oscillatory waves in quadrature. the principle should be clear.
Since, in particular, we are seeking locations with mini-
Ill. PDE-BASED SIGNAL DETECTION APPROACH: mum noise PDF, we adopt the following natural procedure.
GAUSSIAN CASE Within the phase space, we form connected subSgtsor-
responding to isopleths qfy, obtained by cutting through
A. Introduction and objectives the data PDFpp, at different constant valuegy, i.e., Sy

In the real world, nonlinearities can be important in intro- =Pp (8s), and we then minimize the densify, over each
ducing non-Gaussian behavior, which can “frustrate” suchof these connected subsets. To see this we note first that each
linear diagnostics in characterising climate signals as pointe8q is given byd?=v'Cg'v. The PDF of the dat®p can
out in [11]. A probabilistic approach based on the PDF isthen be transformed using the preceding metric, i.e., the Ma-
therefore appropriate to the problem and is easier to genehalanobis metric based dhgl, to yield an isotropic distri-
alize to non-Gaussian systems. Our objective here is to iderbution whereby all directions are equally probable. We then
tify regular signals(oscillation in this case as presented inlook for regions or directions within the phase space with
Sec. \J embedded in a noisy data set based on the assumpiinimum noise PDF for any given data PDF value, given by
tion that we know the noise probability distribution. We sup- (27) "™ Cp| ™ Y?exp(—3 d?). Such minimum exists and, as
pose here that the data and the noise are both Gaussiahown below, it turns out that when
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varying the data PDF value, i.e., varyidyg, all the minima C. Discussion
remain in the same direction, which is by definition the re-
quired signal pattern.

To proceed we then minimize

The choice of labelling the operat(‘IrDC,]1 detection ma-
trix is based on various reasons. First, the matrix is used to
detect signal patterns as presented here, and also to find co-

1 - efficient vectors of the metric-based principal components
min pN:(27T)m2|CN|l e VY (6) presented if7]. It also appears explicitly in other related

subjects such as the study of information content of observed
atmospheric datfl2] and numerical weather predictiph3].

or, equivalently(the exponential is monotonically increas- : ; o
q y( P y Moreover, in the field of classification, one also encounters

ing), . ) . o
9 the same kind of matrix. In fact, when looking for classifi-
maxv'Cy v, (7) ~ cation rules to detect or identify clusters, a similar detection
matrix emerges explicitly when Fisher’s linear discriminant
for any givenpp value or, similarly, any given analysis is appliei14] or when a simple optimization crite-
rion of the trace of the class covariance matrix is involved
d?=v'cylv. (8)  [15]. For numerical computation of its spectrum it may be

preferable to proceed via Egd.1) and(12) since the detec-
We find the patterns that minimizepy over isosurfaces tion matrix is in general nonsymmetric. Other iterative meth-
of pp by finding the stationary points of the Lagrangian  ods exist to solve the generalized eigenprobld®) based
Tt 9 Tl on the so-called Jacobi-Davidson method when the matrices
L=vICyVv=Md™=Vv Cpv), 9 are large and we refer the reader, for details;116).
Now, to make clear the link to th& N ratio approach, we
differentiate Eq.(1) with respect tou to yield the (general-
ized) eigenproblem

where\ is a Lagrange multiplier. This yields the generalized
eigenproblemCy'v=\Cg'v, which can be written in the
more compact form

-1 -
CoCrlv=Av. (10) Cn“Cou=pu, 4
those solutions are the eigenvectors of the detection matrix
adjoint. Therefore, theS/N maximizing patterns and the
PDF-based patterns form, respectively, the left and right
eigenvectors of the detection matﬂ)g,C,;l, i.e., they are in
duality of each other. In the single channel, i.e., the univari-
ate case, these two patterns generally coincide with the ei-

It is worth noting that the same solution patterns are obtaine
by maximizingpp on isosurfaces opy instead, but we fol-
low the first choice, i.e., minimizingy, because it is sim-
pler if the data distribution is more complicated than the
noise distribution as is often the casee Sec. V.

The other way to solve the problem is via the SVD pro-

_ : _ Py genvector of the signal covariance when this latter is low
cedure. Using notation from E¢3) and lettingé=Cp ™"V, rank However, in multichannel problems tB&N maximiz-
then Eq.(7) becomes equivalent to ing patterns and the PDF patterns are generally different for

T 21 ~1/2 the simple reason that the detection matrix is hot symmetric,
max§ (CpCy"Cp™ )&, (1) 5o the distinction between them is important. Furthermore,

in addition to being aS/N ratio, an eigenvalue. of the

detection matrix can now be interpreted in such a way that
exp(—\) represents the noise probability around the corre-
sponding pattern within a unit element of volume of the

along with the constraint8), |£?=d?. Combined with a
Lagrange multiplier, Eq(11) results in the eigenvectdf,
corresponding to the largest eigenvalugof the symmetric

operatorCl, = CY?C;:CY2" whose decomposition is phase space.
S . To complement our analysis, the metric-based principal
CL=CH?C\'CH? =ELALE'L. (120  components presented [i]] can be discussed. Although the

original problem addressed in this paper is different from
The diagonal matrixAj, contains the eigenvalues &p  that of [7], several common points emerge. The noise cova-
whose eigenvectors form the columns Bf,. The signal riance matrixCy, is the equivalent of the error covariance
patternv solution to the original problem is then given by the matrix of [7], while the S/N ratio is the equivalent of the

transformation variability of the index(generalized principal component
. relative to its uncertainty. Equatiori$0) and(14) lead, after
v=Cp’ &=EpAp . (13  simple algebra, to
The required patternfEgs. (10) or (13)] are therefore v=CyU, (15)

eigenvectors of the matrii:DCQl that we labeldetection

matrix for obvious reasons and whose spectrum is given bgo thatu andv are, respectively, the equivalent of the coef-
the diagonal matrix\ ;. Hence, providedCy represents the ficient or weight vectors and state space patterns bf

true covariance of the noise, the eigenvector of the detection Note that owing to the symmetric, but not identical, roles
matrix corresponding to the maximum eigenvalue representsf u andv [Egs. (10) and (14)] a similar equation td15),

an estimate of the signal orientation. Application to synthetidnvolving Cp instead, exists. Also, Thacker and Lewandow-
test series has been performed in Sec. VA and the true ogz [17] emphasized the importance of the Gauss-Markov
cillation in the data was identifietsee Fig. 2 theorem in determining the Gauss-Markov weights for indi-
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ces to predict local variables. Although stated in a different \ AL
context, it is worth pointing out the connection between the
probabilistic interpretation of the patterns and the Gauss-
Markov weights.

IV. EXTENSION TO THE NON-GAUSSIAN CASE

A. Introduction

Although the real world may not be Gaussian, it can,

however, exhibit regimelike behavior, where each regime is  Fig, 1. Schematic representation of a 2D case with two regimes
nearly Gaussian. This regime behavior is observed almoshown by ellipses. The dashed-dotted line is what a conventional,
everywhere, from dynamo theory in geophysics, related taike the S/N ratio, approach would give while the present approach
the reversals of the Earth’s magnetic fi¢lB], to geophys-  would produce the signalg, andv,. The dashed circle represents
ical fluid dynamicg4,5]. For instance, it has been observedthe prewhitened noise.
that the atmosphere is not a mere “red noise” of day-to-day

fluctuations but displays, rather, a kind of regimelike behav-

o —
ior. As Leith[19] quoted: “One suggested source of such (2m)™pp(x) = W/?e_llz(x_”l)Tchl(x_ﬂl)
slow changes is the possible existence of separate regimes of !
internal behavior such that the atmosphere, having entered 1—a S
one regime, tends to remain there for extended periods of + Wme_mx_”) Co,(x"12) (16)
2

time. The long internal time scales induced by such almost-
intransitive behaviof20] give a possibility of long-range
forecasting skill, especially if the transitions between re-wherew; andCp, (i=1,2) are the center and the covariance
gimes are predictable.” Unfortunately, these transitions arenatrix of theith cluster, respectively. In Eq16), « is the
generally unpredictable, as can be modeled by the simplifiegroportion of the data in the first cluster.
Lorenz model4]. Since, in general, the solution to the equivalent of Egs.
Gaussian mixture models are a good candidate for mod®)—(8) when we have a mixture PDF for the data such as
elling such regimelike behavior where each regime clusteEq. (16) can only be obtained numerically, and in order to
can be well approximated by a Gaussian and the overall daget a simplified analytical solution we suppose that the two
set becomes a weighted sum of these individual Gaussiggaussians are not very close to each other, i.e., the data PDF
PDFs. The cornerstone of the mixture model is the wellis bimodal, so that optimization can be done locally around
known elementary, but important, analytical result summa€ach maximum ofy, (see the Appendix Note that bimo-
rized in the following lemmd21]. dality does not necessarily mean that the Gaussians are well
Lemma Any probability densityp(x) can be approxi- separated; it is only a s!mpllfled way to sqlve the problem
mated as closely as desirdth LL(R™ norm, i.e., |f| and the final result is independent of this hypothesis. It

= [l f(x)]dx] by a finite mixture(weighted sumof Gaus- should be noted in this context that not all mixture distribu-
sians as;p(x)=3K_,a;y(x) for some integerk, positive tions of type(16) show bimodality{ 26
A k=1 i i gerk. p Subject to this bimodality assumption, the original prob-
scalarsa; with %i_,a;=1, and Gaussian PDFg . _lem is transformed into a signal detection problem over each
The mixture model technique is widely used in appliedyata cluster(see the Appendixand consequently there is a
statisticg22] and also in geophysics and other fields such agq| tionv for each cluster. More precisely, the solutiagn

Fhe application to atmospheric-model data clustefR®]. It i, the above problem, for th¢h cluster {=1,2) is given by
is very convenient for PDF estimation and cluster identifica-

tion [24] especially given the existence of efficient iterative -

approaches, such as the expectation-maximization algorithm vizcg? &o, 17
[25]. Everitt and Hand26] also provide a good review and '
cover most algorithms used in mixture analysis. . ] )
where &, is the eigenvector of the matrGC,’Di
B. The non-Gaussian case =C%{fC§1Cé’i2T (i=1,2 for clusters 1 and 2, respectively

We now consider the extension of the approach describedorresponding to its leading eigenvalug. Said in a simpli-
in Sec. Il B to deal with the non-Gaussian case for the datdied manner, the signals can be identified by reapplying the
and based, as before, on the assumption that we have amalysis of Sec. Il but over each cluster of the data sepa-
estimate of the noise probability distribution. Precisely, werately, having first subtracted the mean evaluated over that
consider, here and in the corresponding application in Secluster. Figure 1 shows a schematic representation of a two-
V B, the noise to be Gaussian and the data to be, for simplicdimensional(2D) case with two Gaussiangegimes. The
ity, a mixture of two Gaussians. The case of more than twalashed-dotted linémajor axis of the data covariance majrix
can be treated similarly. The expression of the noise probis what conventional approaches, such as3t¢ ratio tech-
ability distributionpy is given by Eq.(5), while for the data  nique, would give, while the actual approach would identify
we now have the right signals/, andv,.
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V. APPLICATION TO A GENERATED TIME SERIES the spectrum, the signature of the existence of an oscillation

in, the data. The first two signal patterfigq. (13)] corre-

The approach developed so far is general and can be us\%ﬁ . . . . . .
. . onding to the leading pair of eigenvalues are displayed in
with embedded and nonembedded state vectors. Since, ho ig. 20). where the two sine waves in quadrature clearly

iesvter:’e\r'ﬁoﬁéehi?ggﬁowggggtljv?;leat;;’r']%??:]s:;gﬁesregit:sgr:fshqw the periodi_c signal c_ontained in_ th_e dgta. Finally, to
sional phase space, using the delay coordinates mégad ver!fy the Gauss!an _behaV|or of the distribution of_the test
as usually performéd in SSA. although SSA is not the keyserles, we show in Flg._(ﬂ).the.msyograms of the noise and.
. . ' . : the data. The normal distribution is also shown for compari-
issue here. In this case, the time seriegs;)q(<i<n son

=[X(t;)]1<i<n Of a variablex at times ;) is transformed '

into a higherM-dimensional phase space by sampling the

data using a sliding window of chosen lendthto yield the B. Case with non-Gaussian data: Regimelike behavior

new M-dimensional time seriesX()1<j<n- , I .
S r=i=n-m+1 As an application to the theory presented in Sec. IV, two

Xiim—1) for 1<is=N—M+1. (18  examples are considered. The first one deals with a generated
signal with regimelike behavior, while in the second example
The covariance matrixCp of the new time series is calcu- the classical Lorenz mod@#] is considered. In the first ex-
lated based on the “nonbiased” Yule-Walker rule for the ample, the signalS(t) has two periodsT,; and T, and
autocovariance functioncj=1/(N—j)2iN=’leixi+j, of the  switches randomly from one regime center to the other. At

Xi=(Xi

original time seriesX;) and is given by each fifth time step there is a probability of 20% that the
system changes regime. In each regime the signal is an am-
(Cplij=Ci—j-1- (190 plified sine wave with are-folding time r of 30 units. The
regime centergu; and u, are chosen to be symmetric with
A. Case of an approximate Gaussian distribution: respect to the origin rather similar to the original Lorenz
No regime behavior systen(4] and the distance &= | u, — p,| is a parameter that

one can modify. The parametéris used for analyzing the
sensitivity of the validity of the Gaussian model. The test
seriesD(t) is obtained using Eq22) but for the results we
show the case fog=0.
In Fig. 3 we show both the sign&(t) [Fig. 3(@)] and the
=T =T dataD(t) [Fig. 3(b)] whenT;=5, T,=7 units, andé=1.
Jorl 7).

We first construct the sign&(t) by randomly generating
damped sinusoidal bursts, with peridd=5 units and an
e-folding time 7 of 30 units, initiated with 0.5% chance at
each time step. Analytically, the signal can be written as

For small values ofs, i.e., § varying between 0 and 0.32,
T both techniques, i.e., th&/N ratio method and the Gaussian
(200 model of Sec. Il give similafcorrec} results. This is par-
ticularly true whenT,=T,, since there is only one fre-
quency to detect. This means that for this range of values of
the parametes, 0< 6= 3| u; — m,|<0.32, there is no need to
separate the data into clusters and the case can still be treated

S(t)= HZO It ,Tn+1](t)exﬁ< -

where the processT() is defined by its initial valueT,
=0, and a recurrent relationship T, ;=inf{m
>T,, ’k“=Tnd=1}, where {/,) is a sequence of indepen-

dent random variables, each taking zero and one with respegging the Gaussian model of Sec. Ill. In this case the fre-
tive probabilities 99.5% and 0.5%. The noigds an AR1)  quencies in the first and the second pairs of eigenvectors,
centered red noise corresponding, respectively, to the first and the second pairs

. of eigenvalues, represent, respectively, the first and the sec-
= + o .
Mt+1= COLO) py+SiN(6) 744, 2D ond oscillations in the data.

with #=0.77 andz, is a unit variance white noise. In Eq. ~ Now, as the distancé gets larger,6 >0.32, theS/N al-
(20) the function 1, equals one inside the interved, b] gorithm fails (as shown beloyto identify the correct fre-

and zero elsewhere. In this example the dat@g¢) is ob-  guency even when the two frequencies are identical, i.e., the
tained by signal contains only one frequency. This failure is easily un-

derstood since now the covariance matfix no longer re-
D(t)=(1+en)S(t)+ n, (220 flects the true structure of the dafti@fer to Fig. 1. In fact,

Fig. 4 shows the noise and the data of Fig. 3 within the first
wheree is a small parameter, normalfy(1), that reflects the  two delay coordinates. In Fig(d) the clusters are shown for
weak nonlinear interaction between the signal and the noise=1.5. Note thats has been increased to 1.5 in Figbyfor
The case where the data is simply the sum of the signal anghe purpose of emphasizing the bimodalityon-Gaussian
the noise corresponds t©=0. In Fig. 2a) is shown the character of the data. Figure &) shows the two leading
signalS(t) (dotted and the data time seri€(t) (solid line)  EOFs maximizing thes/N ratio. To show the sensitivity of
for £=0.5. Note in particular the strong amplitude of the the Gaussian model to changesdrwe display in Fig. &)
noise compared to that of the signal. the ratios fo/N1) and (\1/\>) as a function of the param-

The covariance€p and Cy of the data and the noise, eter 25, where\,, \;, and \, are the first three leading
respectively, are computed as in E89). The eigenspectrum eigenvalues of the matri€/, [Eq. (12)]. Note that an oscil-
of the matrixCp, [Eq. (12)], which is identical to that of the Jation corresponds approximately to values near to and
detection matrixCchl, is shown in Fig. &), which indi-  (much larger than 1 for the first and second ratios, respec-
cates a leading pair of “equal” eigenvalues with a break intively. Clearly this figure shows that for sma#l(6<0.32
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FIG. 2. (a) The signalS(t) obtained by randomly generating damped sinusoidal bstsed and the test serieB(t) (solid) given by
Eg. (22) with £=0.5; (b) the eigenspectrum of the transformed mat@¥ [Eqg. (12)] in decreasing order showing the leading pair
corresponding to the oscillation in the date); the first two signal patterri€q. (13)] corresponding to the leading pair of eigenvalue€gf

and showing the correct oscillation; a(dj the histograms of the noigeolid) and the dat® (t) (dotted, respectively, along with the normal
distribution for comparison.

the case can still be included in the Gaussian model, bét ashavior and then use the non-Gaussian approach. This is par-
gets larger, the model is no longer valid and one has to resoticularly important for atmospheric low-frequency variability

to the non-Gaussian analysis. Note that this simple adequaagjven the regimelike behavior of the atmosphere on those

criterion, based on the generated univariate test series, canrsitales.

be applied to the complicated, multivariate general case and Since the PDF-based algorithm takes into account the dis-

it is recommended, in general, to apply the mixture analysigribution of the data and the noise in phase space, we apply
to check whether the data at hand support multiregime bekq. (17) to the same example witlﬁ:Dl (CDz) being the

6
2F 4+
1 ‘ 2 |1
v 0OF o | |
Of i
_1 —
—2F —2r
-3 . . \ —4 . . \
o] 100 200 300 400 0 100 200 300 400
(a) Time (b) Time

FIG. 3. (a) The signalS(t) generated by initiating an amplified periodic signal switching between two regime centers, separated by
25=2, with respective periods 5 and 7 units aiiwl the time serie® (t) obtained by adding a red noise to the signal.
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FIG. 4. Projection of the noise, (a) and the test seried(t) (b) of Fig. 3 onto the first two delay coordinates. 1500 points have been
used(b) we have chosed=1.5 to emphasize the bimodality in the data.

covariance matriXEq. (19)] of the time series obtained sim- model[11] is the focus here. Compared to the original sys-
ply by cutting through the original time serigsig. 3(b)] by  tem, the forced version can introduce asymmetry into the
a horizontal lineh=hg, and analyzing the uppégiower) part  regimes. The model equations are

separately. Several experiments have been carried out with
varying hy and it is found that the method is quite robust to
changes irhy over a wide range. As an example, fer0.5
<hy=0.5, we always identify the correct signals. In Fig. 6
we show the eigenspectrum 651 [Fig. 6(@] along with the

eigenvectors given by E@17) and corresponding to the two

leading eigenvalues for the first regirteig. 6(b)]. A similar _ ) _ _
correct result is obtained for the second part of the timdn [11], this model has been used to interpret the climate in

series(not shown. They both accurately identify the oscil- terms of a nonlinear dynamical system attractor with distinct
lations in the data. regimes. The parametess r, andb in Eq. (23) are the same
The previous example was based on an artificial, purelyS in the original Lorenz system withr(r,b) =(10,30,8/3)
probabilistic process. In order to involve a more realisticand Wwith fo=2.5 as in [11]. The additional forcing
dynamical model with geophysical connection and with(foC0S6,fosiné) can bias the model regimes by increasing

chaos and regime behavior, variants of the Lorenz mptlel the stability of one of the original model attractors, which
are considered next. More precisely, the “forced” Lorenz therefore becomes occupied more often than the other regime

rather similar to the “extended” versiof28]. In fact, it has
0.4 , . been shown ifi11] that the angle of the forcing can modify

the PDFs associated with the two regimes. It is also noted in
0.2 -//‘/_\_7\_

[11] that the phase space position of the regime centroids
0.0} .

X=—o(x—y)+fycosé,
y=—Xxz+rx—y+fysiné, (23

z=xy—bz

does not change as the forcing rotates from one direction to
another. In this paper we are interested in detecting the fre-
quency of the oscillation spells in the system and we choose
6=l4.

System(23) is integrated using a Euler scheme with time
stepdt=10"2. The system attractor within thez plane is
shown in Fig. 7a). For the analysis we choose to focus on
the variablex since it displays regime behavior. The corre-
sponding time seriex(t) is resampled evenxt=10dt [Fig.

2.0 - - : - 7(b)] in order to bring to a reasonable size the embedding
window length. The resampled and rescalsdaling factor

of 0.2) time series is contaminated with red noj§ég. 7(c)]

and the filtering procedure as in the first example is per-
formed.

As in the previous example, the result is found to be ro-
bust to changes ihy. For example, for-1.1<hy<1.1, we
always get the correct oscillation within the first regime, i.e.,
we do not need a precise boundary between the regimes. In
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FIG. 5. (a) The two leading solutions maximizing ti8N ratio
[Eq. (1)] applied to the global test series of Fig. 3 ahbilthe ratios
(No/N;) (solid) and (\;/\,) (dotted as a function of &=|u,
— mo|. The vertical scale is logarithmic.

fact, as in Fig. &), Fig. 8a shows the ratiosNy/\;) and
(N1/\5) as a function ohg in regime 1(upper part of the
model. In particular, the figure illustrates that in order to
estimate the signal within the first regime, the separation line
can cross the domain of the second regime. This remains
valid as long as the line does not get too close to the regime
center. By looking towards the left side of Fig(@8 at the
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FIG. 6. (a) The eigenspectrum dtgl and(b) the signal patternEq. (17)], corresponding to the leading pair of eigenvalues and showing
the oscillation in the first regime withy=0.3.

smallest(negative values ofhy, i.e., considering the global ysed at once. In Fig. 9, we show the spectrunCjf along
time series, one can tell that the Gaussmn ma8ek. Il

with the first pair of eigenvector patterfigq. (17)] in the
fails to |_dent|fy the signal. In fa,ct, Figs.(B) and &c) show, first regime fp=—0.5). A similar oscillation is obtained in
respectively, the spectrum &p . [Eq. (12)] and the tWo 44 second regiménot showi
leading patternfEq. (13)], i.e., when the whole test series is '

60

40

Other experiments are performed where, for example, the
data projected onto the delay phase space are split into clus-
ters using the k-means” technique, where the clusters be-
come separated by a hyperpldii&]. In this latter case, and
because we are dealing with embedded state vectors, only a
subset of each cluster is used in signal detection. Again simi-
lar results are found with similar robustness to changes in the
position of the hyperplane. Experiments with small nonzero

207y e and also using the original Lorenz model as well as the
extended versiof28] were also carried out, and it is found
0 , , . that the method successfully detects the correct signal.
-20 -10 10 20 30
(@) X VI. SUMMARY AND CONCLUSION
30 ] An approach has been developed to deal with the identi-
F fication of regular signals contained in an intermittent
20 regimelike behavingnoisy) system. The approach is based
10 | on the assumption that we are provided with an estimate of
% the noise. This assumption has been made because in climate
0 analysis the internal variability noise of the climate system
i can be estimated using climate models. Also, in many other
-104 E geophysical examples the noise can be reasonably repre-
—20 . . . sented by a colored noise with characteristics computed from
the data. The approach is, of course, straightforward, appli-
) 0 100 Tzir?i 300 400 cable to noise-free or white-_noise—contamin:;\_te(_:i data. _
The approach has been first formulated within a Gaussian
8F ] framework for the data and the noise, and aims to identify
6F ] locations(signals within the phase space that minimize the
4 ] noise probability distribution on isosurfaces of the data prob-
] ability distribution. The(PDF signals are simply the eigen-
a 2 . vectors of the detection matr'()ZDC,]1 corresponding to the
OHf leading eigenvalues and are therefore dual of the signal-to-
—2 i ] noise ratio maximizing vectors. The method is then extended
_at ] to the non-Gaussian case by expressing the data by a mixture
-5 ] of Gaussians. The signal is then identified for each regime
' : ' using the Gaussian approach.
0] 100 200 300 400
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The method has been successfully applied to synthetic
univariate test series with and without regimes as well as to

FIG. 7. (a) Trajectory of the “forced” Lorenz model within the ~ Variants of the Lorenz system. In the single-channel case
xz-plane,(b) the time evolution ok sampled every tenth time step, With regime behavior, the data is easily split into regimes as
and(c) the contaminated test series obtained by adding a red noiseerformed in Sec. VB, and it is shown that the approach is

to the (resampled and rescalettajectoryx(t). A Euler numerical
scheme with time stedt=10"2 is used for time integration.

quite robust to reasonablemall) changes in the position of
the line separating the regimes. In the multichannel case,
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10 ' ' ' ' ' quired prior to the application of the Gaussian approach. In
climate studies where the internal variability noise can be
estimated from general circulation models, the method can
be applied to diagnose, for example, the effect of external
forcing on the climate system. This point is under investiga-
tion and will be presented elsewhere.

Eigenvalues ratio
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0.... APPENDIX
®

10k M In this short appendix we consider the case where the

noise is Gaussian with PDpy, and the data a mixture of
two Gaussians with PDBp given by Eq.(16). We suppose
: in this Appendix thatpp is a bimodal distribution, i.epp
0 10 20 30 has two local maxima at, sayS and u3. Note that bimo-
(b) Eigenvalue rank dality does not necessarily mean that the Gaussians are well
: : separated, but we adopt this assumption just because it al-
] lows us to get to the heart of the problem, i.e., to work over
1 '\4/‘ each Gaussian component forming the data, and the result, as
5 E illustrated schematically in Fig. 1, is independent of this as-
‘ sumption.
As can be inferred from Fig.(8), for example, the region
: between the two maxima is not the right location to look at,
-1t 3 since at that poinpy is at a maximum whilepp is at a
] “local” minimum. Instead, we have to look for signal pat-
terns in the neighborhood of the two bumpspgf by follow-
ing the same analysis of Sec. lll. In fact, the only difference
is the structure o= p51(5d), which is now nonconnected
FIG. 8. (3) Ratios (\g/\,) (solid) and (\;/\,) (dotted as a  and therefore the minimization should naturally be carried
function of h, for the upper partregime 1 of the forced Lorenz ~ Out over each connected part 8f, i.e., around each bump
model, the vertical scale is logarithmith) The spectrum of the Of pp. Now it can be seen that
matrix Cj, [Eq. (12)] and(c) the two leading pattern€q. (13)] of
the global test serieB(t), i.e., corresponding tbg<min{D(t)}. Ml:ﬂng O(|ele” 1’2€T0521€), (A1)
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however, the data have to be separated {aussianclus-  Wheree=u; — u,. Therefore at a precision
ters and the expectation-maximization algorithm provides a
L . . . T~—1

powerful tool to diagnose the regimes and therefore identify O(lelexd —1/2e"Cp €]),
the signals.

The method can be applied to atmospheric low-frequencyne can optimize around the centpesand u, respectively,
variability to identify, for example, atmospheric signéts-  which yields, as in Sec. lll, the minimization of the noise
cillations). A separation of the data into regimes is then re-probability distributionpy for any given data probability dis-
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FIG. 9. As in Fig. 6 but for regime 1 of the forced Lorenz mode}£ —0.5).
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tribution value p=(27) ™?Cp | Y2exd—1/2(v  there is a solution pattern for each cluster(A2) the noise
: density has been translated to the regime center for consis-

— )Nz (v— 1 imi 2_(y_ o \T~—1
) Co (v=pm)], or similarly d"=(v=p) Co (v tency with Sec. Ill. The problem is then identical to E(B),

—m), e, (8), and(11) and the solution is simply given by
: m2, L __ip TA-1 2 i
min(2) pN_Wie (V=) Cy (V= ), Vl—CDi £o, (A3)
d?=(v— ) TCq X (v— py) (A2) Wheregj is the leading eigenvector dt,gichicglcng
' corresponding to theth cluster. The conclusion is that once
fori=1 or 2. the data have been separated into clusters, the signal detec-

The problem is therefore transformed into a minimizationtion procedure can be carried out as in Sec. Ill but over each
over each clustefor Gaussianseparately and consequently individual cluster.
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